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Abstract— In this paper, we study the optimization of the
discrete-time stochastic linear-quadratic (LQ) control problem
with conic control constraints in infinite horizon. Stochastic
control systems can be formulated as Markov decision problems
(MDPs) with continuous state spaces and therefore we can
apply the direct-comparison based optimization approach to
the total rewards optimization problem. By utilizing the state
separation property, we successfully derive the performance
difference formula. Based on it, the optimality condition and the
stationary optimal feedback control can be obtained. We show
that the optimal control policy is a piece-wise affine function
with respect to the state variables. Our work provides a new
perspective in LQ control problems. The direct-comparison
based approach is applicable to both linear and nonlinear
systems. Based on this approach, learning based algorithms can
be developed without identifying all the system parameters.

I. INTRODUCTION

In this paper, we study the total rewards optimization
of the discrete-time stochastic linear-quadratic (LQ) control
problem with conic control constraints in infinite horizon.
In an LQ optimal problem, the system dynamics are both
linear in state and control variables, and the cost functional
is quadratic in these two variables [1]. Because of the elegant
structure, the LQ problem has always been a hot issue in
optimal control research. Since the fundamental research on
deterministic LQ problems by Kalman [2], there have been
a great number of researches on it; see [1], [3], and [4].

This paper is motivated by two recent developments in
LQ optimal control and Markov decision problems (MDPs).
First, the constrained LQ problem is significant in both
theory and applications, such as the no shorting constraint
in portfolio, and upper/lower bounds for control variables.
However, because of the constraints on state and control
variables, it is hard to obtain the explicit control policy by
solving the Riccati equation [1]. Recently, there are some
promising researches about constrained LQ optimal control
problems, such as [1], [5], and [6].

On the other hand, as we know, stochastic control prob-
lems can be viewed as Markov decision problems; see [7]
and [8]. Therefore, the constrained stochastic LQ control
problem can be formulated as an MDP. On this side, a
direct-comparison based approach has been developed in
the past years to the optimization of MDPs [7]. With this
approach, optimization is based on the comparison of the
performance measures of the system under any two policies.
It is intuitively clear, and it can provide new insights, leading
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to new results to many problems, such as [9], [10], [11],
[12], and [13]. In this paper, we show that the special
features of the constrained stochastic LQ optimal control
make it possible to be solved by the direct-comparison based
approach, leading to some new insights to the problem.

In this paper, we consider the total reward MDP problem
in infinite horizon. Through the direct-comparison based
approach, we first derive the Poisson equation and the
Dynkin’s formula by utilizing the state separation property
of the system structure. Then we successfully derive the
performance difference formula. Based on it, the optimality
condition and the stationary optimal feedback control can be
obtained. We show that the optimal control policy is a piece-
wise affine function with respect to the state variables. Our
work provides a new perspective in LQ control problems.
The direct-comparison based approach is applicable to both
linear and nonlinear systems. In addition, without identifying
all the system parameters, this approach can be implemented
on-line, and learning based algorithms can be developed.

The paper is organized as follows. Section II introduces an
MDP formulation of the constrained stochastic LQ problem;
some preliminary knowledge on MDP and the state separa-
tion property is also provided. In Section III, we derive the
performance difference formula; based on it, the optimality
condition and the optimal policy can be obtained. In Section
IV, we illustrate the results by a numerical example. Finally,
we conclude the paper in Section V.

II. PROBLEM FORMULATION

In this section, we study the infinite horizon discrete-
time stochastic LQ optimal control problem, in which the
conic control constraints are also considered; see [1], [6].
For simplicity of parameters, we consider a one dimensional
dynamic system with a multiplicative noise described by

xl+1 = Axl+Bul(xl) + [Axl + Bul(xl)]ξl, (1)

for time l = 0, 1, · · · . By denoting R (R+) as the set of
real (nonnegative real) numbers, in this system, A ∈ R and
B ∈ R1×m are deterministic values; xl ∈ R is the state
with x0 being given; and ul ∈ Rm is a feedback control law
at time l. For each l, ξl denotes an independent identically
distributed one-dimensional multiplicative noise, satisfying a
normal distribution with mean 0 and variance σ2, σ ≥ 0.

Now we consider the conic control constraint sets (cf. [1])

Cl := {ul|ul ∈ Fl, Hul ∈ Rn
+}, (2)

for l = 0, 1, · · · , where H ∈ Rn×m is a deterministic matrix;
and Fl is the filtration of the information available at time l.



Let Cl ⊂ Rm be a given closed cone; i.e., αul ∈ Cl whenever
ul ∈ Cl and α ≥ 0; and ul + vl ∈ Cl whenever ul,vl ∈ C.

The goal of optimization is to minimize the total reward
performance measure in a quadratic form:

min
{ul}

η{ul}(x) = lim
L→∞

E[

L−1∑
l=0

(Qx2l + uT
l Rul)|x0 = x] (3)

(s.t.) {xl,ul} satisfies (1) and (2) for l = 0, 1, · · · ,

where Q ∈ R+ and R ∈ Rm×m
+ are deterministic. Here we

denote the transpose operation by a superscript “T ”, such as
uT
l . And {ul} denotes the control sequence {u0,u1, · · · }.
For a stationary control law ul = u(x), at time l =

0, 1, · · · , the constraint (2) can be written as

C := {u|u ∈ Rm, Hu ∈ Rn
+}.

Therefore, the performance function of (3) is

fu(x) = Qx2 + uTRu. (4)

Then the above stochastic control problem can be viewed
as an MDP with continuous state spaces. More precisely,
u(x) plays a similar role of actions in MDPs, and then the
control law u is the same as a policy.

Consider a discrete-time Markov chain X := {xl}∞l=0 with
a continuous state space on R. The transition probability can
be described by a transition operator P as

(Ph)(x) :=

∫
R
h(y)P (dy|x), (5)

where P (dy|x) is the transition probability function, with
x, y ∈ R; and h(y) is any measurable function on R.

The product of two transition functions P1(B|x) and
P2(B|x) is defined as a transition function (P1P2)(B|x):

(P1P2)(B|x) :=

∫
R
P2(B|y)P1(dy|x),

where x, y ∈ R, B ∈ B.
For any transition function P , we can define the kth

power, k = 0, 1, · · · , as P 0 = I, P 1 = P , and P k =
PP k−1, k = 2, · · · . Suppose that the Markov chain X
is time-homogeneous with transition function P (B|x), x ∈
R, B ∈ B. Then the k-step transition probability functions,
denoted as P (k)(B|x), k = 1, 2, · · · , are given by the 1-step
transition function defined as P (1)(B|x) = P (B|x) and

P (k)(B|x) :=

∫
R
P (dy|x)P k−1(B|y), k ≥ 2.

For any function h(x), we have

(P (k)h)(x) =

∫
R
h(y)P (k)(dy|x) = P (P (k−1))h(x).

That is, as an operator, we have P (k) = P (P (k−1)).
Recursively, we can prove that P (k) = P k.

Because ξl is an independent Gaussian noise, given the
current state xl = x, under the stationary control u(x), y =
xl+1 satisfies a normal distribution with mean µy = Ax +

Bu(x) and variance σ2
y = [Ax+Bu(x)]2σ2. Then we have

the transition function of this system as follows,

Pu(dy|x) =
1√

2πσy
exp{− (y − µy)2

2σ2
y

}dy. (6)

In order to derive the explicit solution of the constrained s-
tochastic LQ control problem, [6] gives the following lemma
for the state separation property of the LQ problem,

Lemma 1 (State Separation [6]): For any x ∈ R, the
optimal solution for problem (3) at time l is a piecewise
linear feedback policy

u∗(xl) =

{
K̂∗xl, if xl ≥ 0,

−K̄∗xl, if xl < 0,
(7)

for l = 0, 1, · · · , where K := {K ∈ Rm|HK ∈ Rn
+}

associated with the control constraint sets Cl’s; K̂∗, K̄∗ ∈
K, are the optimal values of two correspondent auxiliary
optimization problems; and the superscript “∗” corresponds
to the optimal control. �

Based on (7) in Lemma 1, the stationary control can be
written as u(x) = K̂x1x≥0 − K̄x1x<0, where 1B is an
indicator function such that 1B = 1 if the condition B holds
true and 1B = 0 otherwise; and K̂, K̄ ∈ K. Applying this
control, the system dynamics (1) becomes

xl+1 = Ĉxl1xl≥0 + C̄xl1xl<0

+ [Ĉxl1xl≥0 + C̄xl1xl<0]ξl, (8)

for l = 0, 1, · · · , where

Ĉ = A+ BK̂, C̄ = A−BK̄. (9)

Moreover, the performance measure (3) becomes

ηu(x) = lim
L→∞

E[

L−1∑
l=0

Ŵx2l 1xl≥0 + W̄x2l 1xl<0|x0 = x],

where Ŵ = Q+K̂TRK̂ and W̄ = Q+K̄TRK̄. Therefore,
the performance function (4) becomes

f(x) = Ŵx21x≥0 + W̄x21x<0. (10)

It is easy to verify that Ŵ and W̄ are positive semi-definite.
With the dynamic programming approach, the total reward

performance (3) of the system is discussed in [6]. In this pa-
per, we will show that the direct-comparison based approach
provides a new perspective for this problem, and the results
can be extended easily. In the next section, we will derive
the optimal policy for the LQ problem.

III. OPTIMIZATION OF TOTAL REWARDS

In this section, utilizing the state separation property, we
derive the performance difference formula which compares
the performance measures of any tow policies, and then
derive the optimality condition and the optimal policy with
the direct-comparison based approach.



A. Performance Difference Formula

Denote Ŵ0 = Ŵ and W̄0 = W̄ . Then we have the
performance function as f(x) = Ŵ0x

21x≥0 + W̄0x
21x<0.

From (5), (6), (8), and (10), the performance operator is

(Pf)(x) = Ŵ1x
21x≥0 + W̄1x

21x<0, (11)

where

Ŵ1 = (a1Ŵ0 + a2W̄0)Ĉ2, W̄1 = (a1Ŵ0 + a2W̄0)C̄2,

and

a1 = σφ(
1

σ
) + (1 + σ2)Φ(

1

σ
), (12)

a2 = −σφ(− 1

σ
) + (1 + σ2)Φ(− 1

σ
), (13)

with φ(·) as the probability density function of a standard
normal distribution. We can verify that a1 and a2 are both
nonnegative constants, with a1 + a2 = 1 + σ2.

Continuing this process, we obtain

(P kf)(x) = Ŵkx
21x≥0 + W̄kx

21x<0, (14)

where

Ŵk = (a1Ŵk−1 + a2W̄k−1)Ĉ2,

W̄k = (a1Ŵk−1 + a2W̄k−1)C̄2.

We set W ∗0 = max(Ŵ0, W̄0). In order to ensure the
stability of the system, [6] gives some assumptions. Here
we assume max(Ĉ2, C̄2) < 1/(1 + σ2) ≤ 1. Then we have

Ŵk ≤ (1 + σ2)k(Ĉ2)kW ∗0 , W̄k ≤ (1 + σ2)k(C̄2)kW ∗0 .

Therefore, we have

lim
k→+∞

Ŵk = lim
k→+∞

W̄k = 0. (15)

We denote Ĝk :=
∑k

i=0 Ŵi and Ḡk :=
∑k

i=0 W̄i. Based
on the above claims, we obtain that Ĝk and Ḡk would
converge when k → +∞. Thus we denote

Ĝ := lim
K→+∞

ĜK =
+∞∑
k=0

Ŵk, Ḡ := lim
K→+∞

ḠK =

+∞∑
k=0

W̄k.

Based on the definition of total rewards (3), we have

η(x) = Ĝx21x≥0 + Ḡx21x<0. (16)

By (14) and (15), we have

lim
k→+∞

(P kf)(x) = 0.

Then we have proved that the closed-loop system (8) is L2-
asymptotically stable, i.e., liml→∞E[(xl)

2] = 0. Therefore,
the total rewards η(x) exists, that is a piecewise quadratic
function with positive semi-definite matrices Ĝ and Ḡ.

Now, we define the discrete version of generator, A for
any function h(x), x ∈ R, such that

Ah(x) := (Ph)(x)− h(x). (17)

Taking h(x) as η(x), and by the definition of η(x) in (3),
we have the Poisson equation as follows,

Aη(x) + f(x) = 0. (18)

By (5) and (17), we obtain the Dynkin’s formula as

E{
K−1∑
k=0

[Ah(xk)]|x0} = E{h(xK)|x0} − h(x0). (19)

Now we consider two policies u,u′ ∈ U0, with two
Markov chains in the same state space R, with P, f, η,A, E,
and P ′, f ′, η′,A′, E′, respectively. Let x′0 = x0. Applying
the Dynkin’s formula (19) on X′ with h(x) = η(x) yields

E′{
K−1∑
k=0

[A′η(x′k)|x0} = E′{η(xK)]|x0} − η(x0). (20)

Noting that η′(x0) = limK→∞
∑K−1

k=0 {E′[f ′(xk)]|x0}, and
limK→∞E′{η(xK)|x0} = 0 due to asymptotical stability.
Then by (20), we obtain the performance difference formula:

η′(x0)− η(x0) = lim
K→∞

K−1∑
k=0

E′{(A′η + f ′)(x′k)|x0}. (21)

B. Optimal Policy

Based on the performance difference formula (21), we
have the following optimality condition.

Theorem 1 (Optimality Condition): A policy u∗ in C is
optimal if and only if

Auηu
∗

+ fu ≥ 0 = Au∗ηu
∗

+ fu
∗
,∀u ∈ C. (22)

From (22), the optimality equation is:

min
u∈C
{Auηu

∗
+ fu} = 0. (23)

Proof: Firstly, the “if” part follows directly from the per-
formance difference formula (21), and the Poisson equation
(18).

Next, we prove the “only if” part: Let u∗ be an optimal
policy. We need to prove that (22) holds. Suppose that this
is not true. Then, there must exist one policy, denoted as u′,
such that (22) does not hold. That is, there must be at least
one state, denoted as y, such that

Pu∗ηu
∗
(y) + fu

∗
(y) > Pu′ηu

∗
(y) + fu

′
(y).

Then we can create a policy ũ by setting ũ = u′ when
x = y, and ũ = u∗ when x 6= y. We have ηu

∗
> ηu

′
. This

contradicts to the fact that u∗ is an optimal policy. �
Based on the optimality condition, the optimal control u∗

can be obtained by developing policy iteration algorithms.
Roughly speaking, we start with any policy u0. At the kth
step, k = 0, 1, · · · , given a piecewise linear policy uk(x) =
K̂x1x≥0 − K̄x1x<0, where K̂, K̄ ∈ K, we want to find a
better policy by (23). We consider any policy u(x). Setting
h(x) = ηuk(x) = Ĝx21x≥0 + Ḡx21x<0, by (5), (9), and
(11), we have

(Puηuk)(x) =(a1Ĝ + a2Ḡ)(A+ BK̂)2x21x≥0

+ (a1Ĝ + a2Ḡ)(A−BK̄)2x21x<0. (24)



where a1 and a2 satisfy equations (12) and (13), respectively.
Then, from (4) and (24), we have

uk+1(x) = arg{min
u∈C

[(Puηuk)(x) + fu(x)]}

= K̂k+1x1x≥0 − K̄k+1x1x<0,

with

K̂k+1 = arg min
K∈K

[a1Ĉ
2Ĝ + a2Ĉ

2Ḡ +Q+ KTRK],

K̄k+1 = arg min
K∈K

[a1C̄
2Ĝ + a2C̄

2Ḡ +Q+ KTRK],

where Ĉ = A+ BK, and C̄ = A−BK.
It can be seen that if the policy uk(x) is a piecewise

linear control, then we can find an improved policy uk+1(x),
which is also piecewise linear. Moreover, if K̂k+1 = K̂ and
K̄k+1 = K̄, i.e., uk+1 = uk, then the iteration stops. The
policy uk satisfies the optimal condition (23) in Theorem 1,
and therefore is an optimal control.

Therefore, we can obtain the optimal policy as follows,

u∗(x) = K̂∗x1x≥0 − K̄∗x1x<0, (25)

where

K̂∗ = arg min
K∈K

[a1Ĉ
2Ĝ∗ + a2Ĉ

2Ḡ∗ +Q+ KTRK], (26)

K̄∗ = arg min
K∈K

[a1C̄
2Ĝ∗ + a2C̄

2Ḡ∗ +Q+ KTRK]. (27)

Moreover,

Ĝ∗ = min
K∈K
{a1Ĉ2Ĝ∗ + a2Ĉ

2Ḡ∗ +Q+ KTRK}, (28)

Ḡ∗ = min
K∈K
{a1C̄2Ĝ∗ + a2C̄

2Ḡ∗ +Q+ KTRK}. (29)

The original problem (3) is transferred to two auxiliary op-
timization problems (26) and (27). Under the optimal control
u∗ in (25), the closed-loop system (8) is L2-asymptotically
stable. From (16), with the initial condition x0 = x, we know
the optimal total reward performance of this system is

η∗(x) = Ĝ∗x21x≥0 + Ḡ∗x21x<0, (30)

where Ĝ∗ and Ḡ∗ satisfy (28) and (29), respectively.
Policy iteration can also be implemented on-line, the

performance (potential) can be learned on a sample path
without knowing all the transition probabilities. In on-line
algorithms, the computation of policy evaluation is O(n),
where n is the length of a sample path. Besides, [6] also
provides some algorithms for calculating the optimal policy.

IV. SIMULATION EXAMPLE

In this section, we use a simple example to illustrate the
optimal policy for the constrained LQ control problem (3).

We consider a stochastic LQ system with x0 = 15, m = 3,
A = 0.8, and B = (−0.35, 0.18, 0.25). The cost matrices are

R =

1.2 0.6 0.4
0.6 1.8 0.2
0.4 0.2 2.4

 , and Q = 1.2.

For time l = 0, 1, · · · , the variance of ξl is σ2 = 0.25.
We consider the conic constraint u ≥ 0. By applying

Theorem 1, the stationary optimal control is u∗l (xl) =
K̂∗xl1xl≥0 − K̄∗xl1xl<0, for l = 0, 1, · · · , where K̂∗ =
(0.574, 0, 0)T , K̄∗ = (0, 0.250, 0.270)T , Ĝ∗ = 2.773 and
Ḡ∗ = 3.473. Furthermore, the optimal total reward perfor-
mance is η∗(x0) = Ĝ∗x201x0≥0 +Ḡ∗x201x0<0 = 623.987. It
can be observed that x∗l converges to 0 fast and this closed
loop system is asymptotically stable.

V. CONCLUSIONS

In this paper, we apply the direct-comparison based opti-
mization approach to study the total rewards optimization of
the discrete-time stochastic linear-quadratic control problem
with conic control constraints in infinite horizon. We derive
the performance difference formula by utilizing the state
separation property. Based on it, the optimality condition
and the stationary optimal feedback control can be obtained.
The direct-comparison based approach is applicable to both
linear and nonlinear systems. The results can be extended to
the cases of non-Gaussian noises and average rewards easily.
In addition, without identifying all the system structure
parameters, this approach can also be implemented on-line,
and learning based algorithms can be developed.

Finally, this work focuses on the discrete-time stochastic
LQ control problem. Next step, we can investigate continu-
ous cases. Besides, since the constrained LQ problem has a
wide range of applications, we hope to apply our approach in
more areas, such as dynamic portfolio management, security
optimization of cyber-physical systems, financial derivative
pricing, in our further research.
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